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ABSTRACT 

A quick and versa t i le  technique has been experimentally developed fo r  mea- 

suring average dose from spa t ia l ly  dis t r ibuted gamma radiation i n  a m a s s  system, 

i . e . ,  a body organ o r  the body i t s e l f .  The technique and result ing data within 

s t a t i s t i c a l  error  a re  i n  agreement with King's reciprocity theorem. Experimen- 

t a l  data also show tha t  although the  theorem ignores photon scattering, it i s  

s t i l l  valid.  The technique i s  being extended t o  neutron produced doses. The 

experimental equipment i s  described and experimental resu l t s  a re  presented. 
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SYMBOLS 

average absorbed dose per  un i t  mass 

dist r ibuted absorbed dose i n  t h e  d i f f e ren t i a l  mass 

mass 

d i f f e ren t i a l  mass 

t o t a l  energy (dose) deposition i n  a mass (M) 

dose exposure rate a t  source posit ion 

chromium isotope, atomic m a s s  No. 51 

zinc isotope, atomic mass No. 65 

mill ion electron volts of energy 

gamma energy 

d is t r ibu t ion  function f o r  the  gammas as a function of t h e i r  

energy 

constant of proportionali ty 

indium isotope, atomic mass No. 113, metastable 

t i n  isotope, atomic mass No. ll3 

gold isotope, atomic mass No. 198 
cobalt isotope, atomic mass No. 60 



Basic Problem 

Charged particles hitting the walls of a spacecraft produce bremsstrahlung, 

characteristic X-rays, and de-excitation gammas which can bathe an astronaut in 

an omnidirectional photon flux (fig. 1). 

isotropic and is far more penetrating than the bombarding particles that give 

The photon flux is not necessarily 

rise to it. 

derived from protons in space 

electron belts where it has been estimated at some rads/hour 

negligible, and should be accurately measured. Adequate specification of the 

dose involves, ideally, a complete knowledge of the spatial distribution. 

Although the resulting dose is small in comparison with that 

with the exception of those in the Van Allen 

, it is not (1)) 
( 

Since this is difficult to determine, a statement of the more easily compre- 

hended average dose Dav would appear at first sight to be an acceptable alter- 

native. Finding 

throughout which 

Dav, however, itself involves integration over the volume 

the dose varies and subsequent division by the total mass 

so that even if one is content with the average dose, evaluation of the numer- 

ator in the above expression - which mounts to knowing the spatial 

distribution - is again unavoidable. Chemical measurement methods, which auto- 

matically perform the integration, yield Dav directly; but, in order to mock- 

up suitable incident fluxes for such determinations, sources which are capable 

not only of reproducing the desired flux pattern but are also of sufficient 

intensity to actuate the dosimeter solutions are required. 

makes average dose measurement both expensive and hazardous. 

This in practice 
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Reciprocity Principle 

In a search for an easier method for determining the average dose, we have 

used the so-called radiation reciprocity theorem, first stated by King almost 

60 years ago(2). The principle states (see fig. 2) that the total energy dep- 

osition, i.e., the quantity 

c =  s,w- 
in an absorber exposed to an external source is proportional to the exposure 

rate R which would be observed at the source position if the body were a 

radiator; because Dav is, from expressions (I) and (2) equal to C/M, it fo 

lows that Dav and R are also proportional. King's reciprocity relation 

holds because, as shown in figure 2, C and R are given by two integrals 

which differ from each other in constants only. 

photon scattering, which might limit the principle severely in practical cases 

where Compton collisions are often the main energy-transfer mechanism. 

first task was to demonstrate experlmentally that scattering does not appreci- 

ably alter the validity of the theorem, and this we have done(3) by a method 

King's derivation neglects 

Our 

which need not concern us now. Figure 3 illustrates, as an example, the way in 

which C (dots) and R (crosses) depend on body thickness at an energy of 

about 0.5 MeV. It is seen that R and C remain proportional over the range 

of thicknesses used, so that a measurement of R also gives us a quantity pro- 

portionalto C and hence to the average dose Dav. We might have anticipated 

that scattering would affect matters little by examining figure 4; it seems 

plausible to assume that the effects of radiation which in arrangement (a) can 

reach a point I? only if there is scattering, will be compensated for in the 

inverse or conjugate case (b) by radiation from P which, similarly, can reach 
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the detector only if scattering occurs. However, the agreement represented by 

figure 3 is rather better than might have been expected, because the suggested 

cancellation process cannot be exact; this follows because multisegment photon 

paths are not reversible, since the enerm (and hence the interactioq probabil- 

ity) depend on the order in which the segments are traversed. 

theoretical basis, it is nevertheless experimentally known that 

stant within acceptable limits for tissue-like absorbers in the range of photon 

Whatever the 

C/E is con- 

energies of interest to us. 

Practical Application 

In applying the principle to our problem, we do this: an astronaut exposed 

to an omnidirectional flux can be considered to be exposed to an array of 

sources arranged in a suitable pattern over the surface of a sphere, or exposed 

to one such source which is moved over the surface in an appropriate way, as 

suggested in figure 3. According to the reciprocity principle C (or Dav) 

may be calculated from the readings of multiple dosimeters arranged around a 

radioactive analog of the astronaut or by integrating the readings of a single 

instrument moving over the sphere surface in the correct pattern. 

to measure C or Dav in a single organ ra-kher than in the whole body, we fill 

If we wish 

the organ of interest with radioactive material, leaving the surrounding body 

inactive. 

Flux Anisotropy 

The technique can also be applied in the study of anisotropic bombarding 

Our interest in such patterns arises because, if the flux is nonuni- fluxes. 

form, the whole-body or single-organ average dose m y  be sensitive to astronaut 

attitude. The occupant of an earth-orbiting craft might, for example, be 
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be t t e r  off as f a r  as  gonad dosage is  concerned i f  he flew with h i s  head towards 

the earth. I n  a polar orb i t ,  it i s  possible t h a t  his dose would depend on 

whether he l ay  along the magnetic f i e l d  l i nes  or a t  r igh t  angles t o  them. 

i n  a uniform pa r t i c l e  f lux  there might be cer ta in  p i l o t  orientations within an 

asymmetric c r a f t  along which the  average dose would be smallest, since the  pho- 

ton fluxes emerging from various par t s  of the w a l l s  would be different.  

Even 

The ef fec ts  of anisotropy can be investigated, whether we use multiple 

stationary detectors or a single movable one, by weighting the readings 

according t o  the  fluxes expected t o  arr ive from the various directions. 

the multiple-detector system, however, we can also take into account the motion 

of the astronaut w i t h  respect t o  some fixed feature  of the f lux  pattern,  by 

With 

making h i m  move during the observations. 

one detector i n  our work. This, of course, allows a l l  the same investigations 

For various reasons we have used only 

t o  be made, but at  much greater labor than i f  multiple detectors were employed. 

A fur ther  complication i s  tha t  i n  our experiments space l imitat ions make it dif-  

f i c u l t  t o  drive a shielded detector over a spherical  surface so  t h a t  we a r e  

forced t o  hold the detector stationary and move the phantom i n  the  correct pat- 

t e rn  of r e l a t ive  motion. 

DESCRIPTION OF EXF'EXLIvENTAL PROCEDURE AND SE;Tup 

The phantom we use i s  a fully compartmented "Remcal"* without skeleton. 

It si ts  i n  a chair  (fig.  6 )  which can be driven continuously about three mutu- 

a l l y  perpendicular axes. Because balancing i s  important i f  the  driving motors 

are  not t o  experience variable loads during a motion cycle, the phantom i s  

strapped in to  a moulded fiber-glass shel l .  To permit investigation of 

* 
Alderson Research Laboratories, 48-14 33rd Street ,  Long Island City, N.Y. 
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nonuniform fields, the driving motors are speed-programed so that the phantom 

moves slowly when it is oriented in a direction from which the incident flux is 

ed to be large and quickly in orientations of low-incident intensity. 

About the pitch and r o l l  axes, the programing is done by means of a curve fol- 

is has the inherent disadvantage that errors are cumulative, since 

impressed at any one instant is calculated on the assumption that the 

This assumption may has correctly followed all previous instructions. 

r due to the high carriage inertia. About the azimuthal axis, where 

1 problems are greatest, we have had to rely on a simple cam-follower 

in which cumulative errors do not occur. Figure 7 shows the motor con- 

ervoposition indicator, TV system, and a multichannel analyzer 

will be described shortly. 

The phantom is filled with dilute solutions (about 10 microcuries 

whose 

Per 

liter) of various monoenergetic gamma emitters ranging from Cr-51 (0.32 MeV) to 

~n-65 (1.12 MeV). We introduce the solutions by using a peristaltic pump or, 

more safely, by topping up the filled inactive phantom with very small volumes 

of high specific activity material. Monoenergetic sources alone cannot, of 

course, directly simulate the continuous bremsstrahlung spectrum liberated in 

the capsule walls. However, by performing the experiments with a variety of 

monoenergetic emitters, we can synthesize the response which would have been 

obtained if the individual components were combined 

the continuous spectrum that is being simulated. 

Detectors 

in amounts appropriate to 

The principal advantage of the reciprocity technique, that is, the use of 

cheap, low-intensity emitters, disappears if the external detectors are insen- 

sitive. Our first detectors were miniature Geiger brain probes which, in spite 



of their energy dependence, are satisfactory in radiation spectra of the ty-pe 

we have encountered(4), but we soon replaced them with scintillation detectors. 

Sodium iodide is unusable in this application 

in a complex way(?)) because of the extreme energy dependence, but low-Z phos- 

phors such as anthracene and various solid solutions of p-terphenyl derivatives 

are perfectly acceptable(6). 

a cylindrical anthracene crystal 1/2-inch by 1/2-inch diameter, coupled by 

means of a lucite light guide to a photomultiplier with a 1-inch-diameter 

cathode. 

and was shown, in separate experiments for both anthracene and the plastic 

unless the signal is processed I 

Our first scintillation instrument (fig. 8) used 

The total light output was measured with a sensitive electrometer 

phosphor, NE 102, to be independent of the quantum energy within acceptable 

limits. (See fig. 9 . )  Electrometric measurements are uncertain and have now 

been replaced by pulse counting, in which the area under the pulse-height spec- 

trum, suitably weighted to take account of the energy deposition per pulse, is 

taken as a measure of the energy deposition in the phosphor and hence of the 

exposure in its vicinity. The method, of course, gives the same answer as mea- 

suring the total current but eliminates the drift of electrometer techniques 

and permits us to integrate over lengthy periods, which is not easy when we rely 

on the total current. 

integral 

The result of the weighting process is represented by the 

where N(E)dE is the number of gammas having energies in the interval (E -k aF). 

The integral was first evaluated manually but the process is now carried out 

automatically by counting the number of pulses delivered during the period of 

observation by the 8 Mc/s clock generator in the analog-to-digital converter of 
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the pulse-height analyzer. 

proportional to E, say kE, for each pulse corresponding to energy E and 

delivers nkE pulses for n such pulses, it is clear, by extension to all 

energies, that the output of the generator gives the desired integral directly. 

In the interest of sensitivity, the NE 102 detector has been increased in 

Since the clock circuit delivers a number of pulses 

size to 3 inches by 3 inches, as shown on the right-hand side of figure 10. 

order to determine the energy dependence, which, at least for small phosphor 

sizes, is negligible, we have had to use the current method since fluxes low 

enough not to saturate the electronics cannot ordinarily be measured with ioniza- 

tion chambers with calibration traceable to a standardizing laboratory such as 

In 

the National Bureau of Standards. A difficulty in working with the spectra gen- 

erated in organic materials is that there are no prominent features - since the 
photoelectric cross section is small - and energy calibration by admission of 

(monoenergetic) conversion electrons through a window in the phosphor housing 

is necessary. 

Despite the relatively small energy dependence, it is still necessary to 

know the extreme of spectral distortion. Our experiments on this point have 

absorbed by far the greatest part of our energies in this entire project(4). 

Spectral distortion arises because the photons, even though monoenergetic at 

emission, are degraded in energy by scattering as they push their way outwards 

towards the detector. Although the presence of these scattered photons is 

easily demonstrated by examination of scintillation pulse-height spectra, the 

intensity cannot be found without further processing of the spectra. Thus in 

figure 11, which compares the pulse-height spectrum of a 25-cm-thick water layer 

containing Zn65 with that of a point source of Zn65 in scatter-free condi- 

tions, we see that in the extended-source case a given number of full-energy 
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pulses i s  accompanied by a larger  number of low-energy events than i f  scat ter-  

f r e e  conditions obtain. For convenience of comparison, the spectra have here 

been normalized t o  equal photopeak counts. We cannot assume, however, that the  

photon in t ens i t i e s  a t  a given energy are  i n  the r a t i o  of the  pulse frequencies 

at  the  corresponding pulse heights. 

a r e  a re f lec t ion  only of the  distribution-in-energg of the  secondary electron 

In  f ac t ,  because the  pulse-height spectra 

l iberated i n  the detector material, we know l i t t l e  of the photon (or "time") 

spectra themselves. 

height spectra by means of the  well-known matrix inversion technique (7) which 

removes instrumental dis tor t ions and reveals the  or iginal  photon spectra, When 

t h i s  technique i s  applied t o  the pulse dis t r ibut ions of f igure 11, the  photon 

spectra of f igure 12 a re  obtained. 

accompanying the  primary Zn65 

much l e s s  than inspection of figure 11would suggest. 

To get t h i s  information we must "unscramble" the pulse- 

The r e l a t ive  amount of scattered radiation 

photons (energy 1.12 MeV) i s  now seen t o  be 

In  f a c t  it i s  easy t o  

show tha t  the p l a s t i c  phosphor detectors we are  using (8) can deal adequately 

with scattered photon spectra similar t o  tha t  represented by the shaded histo- 

gram of f igure 12, and a re  negligibly affected by changes i n  spectral  distribu- 

t ion  as the phantom changes i t s  orientation with respect t o  the detector. 

DISCUSSION OF RESUmS 

Dependence of Dav on Body Orientation 

Some re su l t s  on the var ia t ion of average dose with body orientation a re  

shown f o r  an energy of 0.39 MeV i n  figure 13. The gamma rays are derived from 

In113m, a very sui table  material f o r  these experiments because of i ts  short 

ha l f - l i f e  (1.7 hours) which reduces contamination problems, and because of i t s  

easy ava i lab i l i ty  as a daughter product of Sn113 (ha l f - l i fe  118 days). 
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Curves marked with c i rc les  show the way i n  which the  average whole-body 

The zenith angle i s  defined as the (phantom) dose var ies  with zenith angle. 

angle the photon t ra jectory makes with respect t o  the horizontal plane of the 

body and i s  measured from Oo t o  3600. 

through the head (90" zenith angle) o r  upwards through the  f e e t  (2700 zenith 

When the  radiation appr ches downwards 

angle), the energy deposition i s ,  as  we expect, smaller than when the photon 

from angles intermediate t o  these two; but the difference is  

cular than i f  the projected surface area of t he  body ( g ) ,  as  

curve, were the only factor  operating. I n  f ac t ,  when the  

ons head on (90" zenith angle), reduction i n  impact area i s  

ated by the greater t i s sue  thickness backing t h i s  smaller area, 

t o t a l  absorption i s  increased. This effect  presumably 

he body or phantom i s  s i t t i n g  o r  standing; but, because the  

fiber-glass support she l l  i s  designed f o r  the s i t t i n g  position, we have not yet 

been able t o  investigate t h i s .  Too, a t  present, there are  insuff ic ient  measure- 

ments a t  enough energies t o  deduce with confidence the r e su l t s  obtained with an 

incident photon continuum. 

Figure 13 also shows resu l t s  f o r  the l i ve r ,  where the variation i s  qui te  

pronounced. In both cases i l lus t ra ted ,  the  incident f l ux  i s  uniform. When the 

flux depends on cos28 where 8 i s  the zenith angle, we f ind tha t  the average 

whole-body dose varies by only some 10 percent when the orientation of the body 

axis  t o  the direction of the f lux  path changes from Oo t o  90'. 

on the other hand i s  50 percent less when the body leads head on in to  the direc- 

t i on  of the  f lux  path than i f  it leads in to  it a t  90° t o  the head-on position. 

The reduction is  s l igh t ly  different ,  about 45 percent, i f  it leads with i ts  

The l i v e r  dose 
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feet .  

of possible f lux  pat terns  and f o r  a variety of organs i n  the  body. 

This i s  the kind of information we are  now extracting f o r  a large number 

The technique used f o r  measuring photon dose i s  ve r sa t i l e  and quick, but 

has some drawbacks. These are: The l imitation of sui table  and available gamma 

emitters f o r  supplying a range of useful energies, although the  scaling tech- 

nique of Johansson(l0) may overcome t h i s  d i f f icu l ty .  Contamination problems 

ar i se  if long-lived nuclides a re  used. 

of scattered radiations from the walls of the room i n  which the experiments a re  

We do not fu l ly  understand the  e f fec ts  

carried out, nor can we easi ly  allow f o r  the e f fec ts  of the s t e e l  fork sup- 

porting the phantom. Lastly, though t h i s  i s  unconnected with the val idi ty ,  or 

otherwise, of the reciprocity principle,  we do not know what input bremsstrah- 

lung spectra t o  use. Perhaps i n  these circumstances our scheme of working with 

monoenergetic emitters i s  a fortunate one, since any continuous spectrum, as  we 

have seen, can be deal t  with i f  the behavior of the individual components of 

the continuum i s  understood. 

t o  protons, whose interact ion with the body i s  of great astronautical  impor- 

tance, sui table  extended proton sources f o r  use i n  the  conjugate experiments 

a re  not available and so the method f a i l s  i n  t h i s  case. There i s  a promising 

application, however, i n  neutron studies (Bethe(ll1) and we have already begun 

t o  investigate production of extended l iqu id  neutron sources suitable f o r  f i l l i n g  

the phantom, using soluble beryllium salts i n  aqueous solutions of a,-emitting 

substances. 

Although the method i s  theoret ical ly  applicable 

Several incidental  investigations have become necessary as par t s  o f  the  

main program and are  i n  progress. One i s  the use o f  Compton scattering as a 



means of producing radiation of continuously variable energy. 

such radiation makes it possible t o  increase the effect ive number of input l i nes  

Availability of 

i n  the construction of response matrices f o r  photon spectral  studies. 

be t t e r  response matrices obtained i n  this way, the notorious inaccuracy of the  

matrix inversion technique w i l l  be lessened. Finally, i n  order t o  obtain input 

data f o r  our reciprocity measurements it w i l l  be necessary t o  carry out spectral  

measurements on electron-generated bremsstrahlung f o r  various angles of electron 

incidence. 

With the  
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Figure 1.- Bremsstrahlung production i n  space vehicle walls. 
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Figure 2.- Diagram i l l u s t r a t i n g  the  radiation Reciprocity theorem. 





Figure 4. - Diagram illustrating the self -compensating effects of photon 
scattering on C and R which helps maintain their proportionality. 
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Figure 5.- Schematic drawing showing how omnidirectional or nonuniform 
gamma radiation i s  obtained and the reciprocity principle applied 
by having the source and detector traverse the same spherical path 
segments for given time intervals .  
sphere while the source and detector remain stationary.  

This i s  done by driving the 



Figure 6. - Photograph showing phantom mounted on driving apparatus. 
The moulded fiber-glass she l l  i s  not being used. 



Figure 7.- Photograph showing motor controls, servoposition indicator,  
Tv monitoring, and. pulse height analyzer system. 
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Figure 10.- Sc in t i l l a t ion  detectors used f o r  phantom exposure measure- 
ments. The detector on the l e f t  shown with preamplifier case open 
can be used with the 1/2-inch-diameter anthracene and 1-inch-diameter 
NE 102 th in  window phosphors shown a t  top center which permit admis- 
sion of conversion electrons. 
can be used fo r  pulse on t o t a l  current measurement. 

The 3-inch NE 102 detector ( r igh t )  
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